Structure of Bis(dithiobisformamidinium) Aquapentachlororhenate(IV) Trichloride Dihydrate

By T. Lis
Institute of Chemistry, The University, 50-383 Wroclaw, Poland

(Received 14 March 1980; accepted 18 June 1980)

Abstract

NH}_{3}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2}\right]_{2}\left[\mathrm{ReCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}\).$2 \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}^{2+} . \mathrm{Cl}_{5} \mathrm{H}_{2} \mathrm{ORe}^{-} .3 \mathrm{Cl}^{-} .2 \mathrm{H}_{2} \mathrm{O}$, orthorhombic, Pnam, $a=17.576$ (9), $b=8.948$ (4), $c=$ 16.776 (7) $\AA, M_{r}=828.4, V=2638.4 \AA^{3}, Z=4$, $D_{m}=2.074, D_{x}=2.085 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo Ka, $\lambda=$ $0.71069 \AA)=6.00 \mathrm{~mm}^{-1}$; final $R=0.046$ and $R_{w}=$ 0.032 for 1905 non-zero reflexions. The crystals are composed of dithiobisformamidinium cations, aquapentachlororhenate(IV) anions, Cl^{-}anions and water molecules. The bond lengths in the complex anion are $\mathrm{Re}-\mathrm{H}_{2} \mathrm{O} 2.076$ (10), $\mathrm{Re}-\mathrm{Cl}_{\text {trans }} 2.303$ (4) and $\mathrm{Re}-\mathrm{Cl}_{c i s} 2.345(2)-2.351$ (2) \AA; the $\mathrm{H}_{2} \mathrm{O}-\mathrm{Re}-$ $\mathrm{Cl}_{\text {trans }}$ bond angle is 179.8 (3) ${ }^{\circ}$. The disulphide group has the normal configuration and dimensions, with an S-S distance of 2.026 (3) \AA and a CSS/SSC torsion angle of $100 \cdot 2(5)^{\circ}$. The thiourea groups are planar.

Introduction. In the course of investigations on crystal structures of complexes isolated in the reaction system $\mathrm{ReO}_{4}^{-}+\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}+\mathrm{HCl}$ (Lis, 1976, 1977, 1979), the crystal structure of the title compound has been determined. The compound was obtained as follows: to $0.1 \mathrm{~g} \mathrm{NH} 4{ }_{4} \mathrm{ReO}_{4}$ and $0.1 \mathrm{~g}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}, 10-20 \mathrm{ml}$ of concentrated HCl was added. The solution was left in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$. Usually, after $2-4$ weeks green and yellow crystalline compounds precipitated. The green platy crystals were investigated in this work; they are rather unstable in air but quite stable in paraffin oil.

Examination of Weissenberg photographs showed that the crystals are orthorhombic; the systematic absences were: $h 0 l$ for $h=2 n+1,0 k l$ for $k+l=2 n$ +1 ; space group Pnam ($D_{2 h}^{16}$) or Pna2 ${ }_{1}\left(C_{2 p}^{9}\right)$. A crystal of approximate dimensions $0.12 \times 0.11 \times 0.10 \mathrm{~mm}$ was chosen and coated with paraffin oil to prevent crystal decomposition. A Syntex $P 2_{1}$ diffractometer and Mo Ka radiation with a graphite monochromator were used for lattice-parameter and intensity measurements by the $2 \theta-\omega$ scan technique. The intensity of one periodically monitored reflexion displayed no observable trends. The data were corrected for Lorentz and polarization effects. Of 4247 accessible reflexions, 1905 with $I>3 \sigma(I)$ were used for the structure
determination. All calculations were performed on a Nova minicomputer with programs supplied by Syntex. Neutral-atom scattering factors used were those listed in International Tables for X-ray Crystallography (1974); both real and imaginary components of the anomalous dispersion were included for Re, Cl and S atoms.

Of the two possible space groups, Pnam and Pna2 ${ }_{1}$, the centrosymmetric, Pnam, was the first choice. A three-dimensional Patterson map revealed the Re atoms in a crystallographic mirror plane at $z=\frac{1}{4}$. All further non- H atoms were found from subsequent difference maps; R then dropped to $0 \cdot 10$. The compound was identified as $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2}\right]_{2}\left[\mathrm{ReCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ $\mathrm{Cl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$. This structure was then refined by leastsquares techniques, first with isotropic, then with anisotropic thermal parameters. Eight H atoms (bonded to N atoms) were placed in geometrically calculated positions at a distance of $1.0 \AA$ from the bonded atoms. The remaining H atoms were found from a difference synthesis. Further refinement with fixed positional parameters for N -bonded H atoms reduced R to 0.046 and R_{w} to 0.032 .* The final difference synthesis was featureless; the highest four peaks appeared about Re , corresponding in height to the H atoms of the earlier difference synthesis.

Discussion. The final atomic coordinates and their estimated standard deviations are listed in Table 1. Crystals of $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~J}_{2}\left[\mathrm{ReCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\right.$ $\mathrm{Cl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ are composed of aquapentachlororhenate(IV) anions, Cl^{-}anions, dithiobisformamidinium cations and water of crystallization. The arrangement of the molecules in projection on the (001) plane is shown in Fig. 1. The more important interatomic distances and bond angles are listed in Table 2.

[^0](C) 1980 International Union of Crystallography

Table 1. The final positional parameters with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Re	0.0638 (1)	$0 \cdot 1549$ (1)	0.25	2.23
$\mathrm{Cl}(1)$	$0 \cdot 1322$ (2)	0.2846 (3)	$0 \cdot 1514$ (2)	3.44
$\mathrm{Cl}(2)$	0.0031 (2)	0.0144 (3)	$0 \cdot 1506$ (2)	$3 \cdot 11$
$\mathrm{Cl}(3)$	-0.0305 (2)	0.3337 (5)	0.25	4.46
$\mathrm{Cl}(4)$	0.3457 (2)	0.8913 (3)	0.0810 (2)	3.77
$\mathrm{Cl}(5)$	0.1571 (2)	0.6657 (4)	0.25	3.41
S(1)	0.1512 (2)	0.7252 (3)	0.0548 (2)	$3 \cdot 31$
S(2)	$0 \cdot 1720$ (2)	0.7815 (3)	-0.0601 (2)	$3 \cdot 12$
C(1)	0.0519 (5)	0.6799 (9)	0.0528 (5)	2.96
C(2)	0.1711 (5)	0.9802 (10)	-0.0574 (6)	2.79
N(1)	0.0277 (4)	0.6209 (8)	$0 \cdot 1196$ (5)	3.31
N(2)	0.0092 (4)	0.7001 (8)	-0.0090 (5)	3.64
N(3)	$0 \cdot 1904$ (5)	1.0458 (8)	-0.1233 (5)	3.82
N(4)	$0 \cdot 1541$ (5)	1.0537 (9)	0.0073 (5)	4.10
O(1)	$0 \cdot 1490$ (6)	-0.0058 (12)	0.25	4.72
$\mathrm{O}(2)$	$0 \cdot 2928$ (6)	0.0303 (13)	$0 \cdot 25$	3.66
$\mathrm{O}(3)$	0.2956 (10)	0.3474 (16)	0.25	5.42
H(11)	-0.027	0.591	$0 \cdot 125$	$7 \cdot 7$
H(12)	0.064	0.606	0.165	$4 \cdot 3$
H(21)	-0.046	0.672	-0.007	$5 \cdot 5$
H(22)	0.031	0.742	-0.059	$5 \cdot 0$
H(31)	$0 \cdot 191$	1.158	-0.127	$4 \cdot 5$
H(32)	0.204	0.984	-0.170	2.9
H(41)	$0 \cdot 154$	1.166	0.007	$4 \cdot 1$
H(42)	$0 \cdot 142$	0.999	0.057	$5 \cdot 7$
H(1)	$0 \cdot 126$ (10)	-0.107 (21)	$0 \cdot 25$	7.2
H(10)	$0 \cdot 199$ (9)	0.027 (15)	$0 \cdot 25$	$5 \cdot 8$
H(2)	0.305 (5)	-0.024 (9)	0.216 (5)	2.4
H(3)	0.243 (14)	0.341 (27)	0.25	$16 \cdot 6$
H(30)	$0 \cdot 325$ (14)	$0 \cdot 252$ (30)	0.25	15.9

Table 2. Selected intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$ in the title compound

Atoms marked with a prime are related to those at x, y, z by a mirror plane at $x, y, \frac{1}{4}$.

$\mathrm{Re}-\mathrm{Cl}(1)$	$2.351(2)$	$\mathrm{Re}-\mathrm{Cl}(2)$	$2 \cdot 345(2)$
$\mathrm{Re}-\mathrm{Cl}(3)$	$2.303(4)$	$\mathrm{Re}-\mathrm{O}(1)$	$2.076(10)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.792(9)$	$\mathrm{S}(2)-\mathrm{C}(2)$	$1.778(9)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.309(11)$	$\mathrm{C}(2)-\mathrm{N}(3)$	$1.296(12)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.292(11)$	$\mathrm{C}(2)-\mathrm{N}(4)$	$1.305(12)$
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.026(3)$	$\mathrm{O}(1)-\mathrm{Re}-\mathrm{Cl}(3)$	$179.8(3)$
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{Cl}(1)$	$88.5(3)$	$\mathrm{O}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$87.5(3)$
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{Cl}(1)$	$91.4(1)$	$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{Cl}(2)$	$92.6(1)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}\left(1^{\prime}\right)$	$89.4(1)$	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}\left(2^{\prime}\right)$	$90.6(1)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$89.8(1)$	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}\left(2^{\prime}\right)$	$175.9(1)$
$\mathrm{S}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	$102.4(3)$	$\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}(2)$	$102.9(3)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$113.0(6)$	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	$115.4(7)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$123.3(7)$	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(4)$	$121.9(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$123.7(8)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	$122.7(9)$

Compounds of the type $\left\{\left.M \mathrm{Cl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right|^{n-}\right.$ occur rather infrequently; in the case of Re it is, to the author's knowledge, the first example of the isolation of the $\left|\mathrm{ReCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right|^{-}$anion. In the aquapentachlororhenate(IV) anions the water molecule, the Re atom and one Cl atom lie on the mirror plane. Thus, the complex anion has $m\left(C_{s}\right)$ crystallographic symmetry.

Fig. 1. The crystal structure of $\left\{\left.\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CSSC}\left(\mathrm{NH}_{2}\right)_{2}\right|_{2} \mid \mathrm{ReCl}_{5}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right) \mid \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: projection on the (001) plane.

The Re atom lies out of the plane of the four $\mathrm{Cl}_{\text {cis }}$ atoms at a distance of 0.082 (1) \AA towards the $\mathrm{Cl}_{\text {trans }}$ atom, and the resulting $\mathrm{Cl}_{\text {cis }}-\mathrm{Re}-\mathrm{Cl}_{\text {trans }}$ angles exceed $90^{\circ}\left[91.4\right.$ (1) and $92.6(1)^{\circ} 1$. The $\mathrm{Re}-\mathrm{Cl}_{\text {cis }}$ distances of 2.351 (2) and 2.345 (2) \AA are practically the same and comparable to those found in ReCl_{6}^{2-} anions: cf. 2.35 (1) (average) in (p-toluidinium) $\left.)_{2} \mid \mathrm{ReCl}_{6}\right\rfloor$ (Adman \& Margulis, 1967), 2.353 (4) in $\mathrm{K}_{2}\left|\mathrm{ReCl}_{6}\right|$ (Grundy \& Brown, 1970) and 2.361 (3) \AA in $\left(\mathrm{NH}_{4}\right)_{2}\left|\mathrm{ReCl}_{6}\right|$ (Lisher, Cowlam \& Gillott, 1979). The $\mathrm{Re}-\mathrm{Cl}_{\text {trans }}$ distances of $2 \cdot 303$ (4) \AA are only slightly, but significantly, shorter than the remaining $\mathrm{Re}-\mathrm{Cl}$ bonds. The Re -aqua bond lengths of 2.076 (10) \AA are shorter than distances in compounds of Re ${ }^{\text {VII }}$ (Beyer, Glemser \& Krebs, 1968), $\mathrm{Re}^{\mathrm{V1}}$ (Frais \& Lock, 1972), Re^{V} (Lis, 1979) and $\mathrm{Re}^{\text {III }}$ (Koz’min, Novitskaia \& Kuznetsov, 1973; Cotton, Frenz \& Shive, 1975).
The dimensions of the dithiobisformamidinium cation are listed in Table 2. The bond lengths $S-S$ of 2.026 (3), S-C of 1.792 (9) and 1.778 (9) and C-N

Table 3. Probable hydrogen bonds

$$
\text { Distances are in } \AA \text {, angles in deg. }
$$

$X-\mathrm{H} \cdots \gamma$	$X \cdots \gamma$	$X-H$			
$\mathrm{N}(1)-\mathrm{H}(11) \cdots \mathrm{Cl}(4) \mid x$! $\mathrm{y}_{3}^{3}-\mathrm{y}, \mathrm{zl}$	3.266 (7)	1.00	$2 \cdot 37$	149	
$\mathrm{N}(1)-\mathrm{H}(12) \cdots \mathrm{Cl}(5)$	$3 \cdot 180$ (7)	1.00	$2 \cdot 23$	157	
$\mathrm{N}(2)-\mathrm{H}(21) \cdots \mathrm{Cl}(4) \left\lvert\, x-\frac{1}{2} \cdot \frac{1}{2} \cdot \underline{2}\right.$	3.347 (7)	1.00	2.47	146	
$N(2) \quad \mathrm{H}(22) \cdots \mathrm{S}(2)$	3.075 (7)	1.00	2.50	117	
$\mathrm{N}(3) \mathrm{H}(31) \cdots \mathrm{Cl}(4) \left\lvert\, \frac{1}{2}-x_{2} \frac{1}{2}+3 .-1\right.$	3.234 (7)	1.00	$2 \cdot 32$	152	
$\mathrm{N}(3)-\mathrm{H}(32) \cdots \mathrm{O}(3) \left\lvert\, \frac{1}{2}-x\right., \frac{1}{2}+1,2-\frac{1}{2}$	2.781 (12)	1.00	1.81	164	
$\mathrm{N}(4) \mathrm{H}(41) \cdots \mathrm{Cl}(4)!\frac{1}{2} \quad x . \frac{1}{2}+1 .-21$	3.364 (8)	1.00	$2 \cdot 50$	144	
$\mathrm{N}(4) \mathrm{H}(42) \cdots \mathrm{S}(1)$	3.046 (8)	1.00	2.45	118	
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(5) \\|, x . y \quad 1, z 1$	2.943 (11)	0.99 (19)	2.11 (19)	141 (11)	
$\mathrm{O}(1) \mathrm{H}(10) \cdots \mathrm{O}(2)$	2.547 (14)	0.93 (16)	1.65 (16)	163 (11)	
$\mathrm{O}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}(4) \mid x, y-1, z 1$	$3 \cdot 233$ (6)	0.78 (8)	$2 \cdot 50$ (8)	159 (8)	
$\mathrm{O}(3) \mathrm{H}(3) \cdots \mathrm{Cl}(1)$	3.363 (15)	0.93 (26)	2.61 (20)	139 (16)	
$\mathrm{O}(3)-\mathrm{H}(30) \cdots \mathrm{O}(2)$	2.838 (17)	1.00 (27)	$2 \cdot 06$ (28)	133 (16)	

of $1.292(11)-1.309(11) \AA$ are in agreement with those found in other dithiobisformamidinium salts (Villa, Manfredotti, Nardelli \& Tani, 1972; Lis, 1979). Also, the S valency angles [102.9 (4) and 102.4 (3) ${ }^{\circ}$] and the torsion angle of the disulphide group $\left|100.2(5)^{\circ}\right|$ lie in the normal range. The two thiourea parts of the cation are both planar.

The structure is held together by hydrogen bonds utilizing all H atoms. The data on these hydrogen bonds are given in Table 3. Two $[\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(5)$ and $\mathrm{O}(1)-\mathrm{H}(10) \cdots \mathrm{O}(2)]$ may be classified as relatively strong.

References

Adman, E. \& Margulis, T. N. (1967). Inorg. Chem. 6, 210-214.

Beyer, H., Glemser, O. \& Krebs, B. (1968). Angew. Chem. 80, 286-287.
Cotton, F. A., Frenz, B. A. \& Shive, L. W. (1975). Inorg. Chem. 14, 649-652.
Frals, P. W. \& Lock, C. J. L. (1972). Can. J. Chem. 50, 1811-1818.
Grundy, H. D. \& Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Koz'min, P. A., Novitskaia, G. N. \& Kuznetsov, W. G. (1973). Zh. Strukt. Khim. 14, 680-684.

Lis, T. (1976). Acta Cryst. B32, 2707-2709.
Lis, T. (1977). Acta Cryst. B33, 944-946.
Lis, T. (1979). Acta Cryst. B35, 3041-3044.
Lisher, E. J., Cowlam, N. \& Gillott, L. (1979). Acta Cryst. B35, 1033-1038.
Villa, A. C., Manfredotti, A. G., Nardelli, M. \& Tanl, M. E. V. (1972). Acta Cryst. B28, 356-360.

Acta Cryst. (1980). B36, 2784-2786

Bis(tetraethylammonium) $\mathbf{D i}-\mu$-sulphido-bis[oxo(disulphido)molybdenum]

By William Clegg and George M. Sheldrick
Anorganisch-Chemisches Institut der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany
and C. David Garner and George Christou
Department of Chemistry, Manchester University, Manchester M139PL, England

(Received 10 June 1980; accepted 1 July 1980)

Abstract

N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{~S}_{2}\right)_{2}\right], 2 \mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}^{+} . \mathrm{Mo}_{2}-\) $\mathrm{O}_{2} \mathrm{~S}_{6}^{2-}, M_{r}=676 \cdot 6$, monoclinic, $P 2_{1} / c, a=13.485$ (3), $b=14.354$ (3), $c=14.749$ (3) $\AA, \beta=97.50$ (2) ${ }^{\circ}, U=$ $2830.2 \AA^{3}, Z=4, D_{x}=1.588 \mathrm{Mg} \mathrm{m}^{-3}$; final $R=$ 0.0358 for 4025 reflexions. The anion contains two Mo^{v} atoms, each with a terminal O^{2-} and an edge-on $\left(\mathrm{S}_{2}\right)^{2-}$ ligand, bridged by two S^{2-} ligands, and has approximate $C_{2 v}(m m)$ symmetry.

Introduction. The compound was obtained from a reaction between MoCl_{3} and NaSPh (1:5 molar ratio) in methanol, followed by treatment with $\mathrm{NEt}_{4} \mathrm{Cl}$, and was recrystallized from a methyl cyanide-diethyl ether mixture. Intensities were collected from a crystal of average dimension 0.28 mm by a profile-fitting procedure (Clegg, 1981) with graphite-monochromated Mo $K \alpha$ radiation $(\lambda=0.71069 \AA)$ and a Stoe-Siemens AED four-circle diffractometer. 4025 unique reflexions with $7 \leq 2 \theta \leq 60^{\circ}$ and $I \geq 2 \sigma(I)$ were measured and corrected for absorption by an empirical method based on measurements of sets of
reflexions at different azimuthal angles ($\mu=1.31$ mm^{-1}; transmission factors range from 0.588 to 0.654). Cell dimensions were obtained from the diffractometer angles for 50 centred reflexions with $20 \leq 2 \theta \leq 25^{\circ}$.

The structure was solved by Patterson and Fourier methods, and refined to a minimum value of $\sum w \Delta^{2}$ $\left[\Delta=\left|F_{o}\right|-\left|F_{c}\right| ; w^{-1}=\sigma^{2}\left(F_{o}\right)\right]$. Anisotropic thermal parameters were refined for all non- H atoms. H atoms were assigned isotropic thermal parameters fixed at 1.3 times the equivalent isotropic value for the corresponding C atom. $\mathrm{C}-\mathrm{H}$ lengths and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles were constrained to $0.96 \AA$ and 109.5°.
The final R is 0.0358 , with $R_{w}=\left(\sum w \Delta^{2} / \sum w F_{o}^{2}\right)^{1 / 2}$ $=0.0291$. Coordinates and derived bond lengths and angles are given in Tables 1 and 2.*

[^1]
[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as
 Supplementary Publication No. SUP 35426 (23 pp.). Copies may deposited with the British Library Lending Division as
 Supplementary Publication No. SUP 35426 (23 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Lists of structure factors, H atom coordinates and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35466 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

